skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Koizumi, Hidehiko"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Previously our computational modeling studies (Phillips et al., 2019) proposed that neuronal persistent sodium current (I NaP ) and calcium-activated non-selective cation current (I CAN ) are key biophysical factors that, respectively, generate inspiratory rhythm and burst pattern in the mammalian preBötzinger complex (preBötC) respiratory oscillator isolated in vitro. Here, we experimentally tested and confirmed three predictions of the model from new simulations concerning the roles of I NaP and I CAN : (1) I NaP and I CAN blockade have opposite effects on the relationship between network excitability and preBötC rhythmic activity; (2) I NaP is essential for preBötC rhythmogenesis; and (3) I CAN is essential for generating the amplitude of rhythmic output but not rhythm generation. These predictions were confirmed via optogenetic manipulations of preBötC network excitability during graded I NaP or I CAN blockade by pharmacological manipulations in slices in vitro containing the rhythmically active preBötC from the medulla oblongata of neonatal mice. Our results support and advance the hypothesis that I NaP and I CAN mechanistically underlie rhythm and inspiratory burst pattern generation, respectively, in the isolated preBötC. 
    more » « less